甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得 $3$ 分;如果只有一人猜对,则“星队”得 $1$ 分;如果两人都没猜对,则“星队”得 $0$ 分.已知甲每轮猜对的概率是 $\dfrac{3}{4}$,乙每轮猜对的概率是 $\dfrac{2}{3}$;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:
【难度】
【出处】
2016年高考山东卷(理)
【标注】
-
“星队”至少猜对 $3$ 个成语的概率;标注答案$\dfrac{2}{3}$解析本题考查事件的独立性与互斥性.记事件 $A$:“甲第轮猜对”,记事件 $B$:“乙第一轮猜对”,
记事件 $C$:“甲第二轮猜对”,记事件 $D$:“乙第二轮猜对”,
记事件 $E$:““星队”至少猜对 $3$ 个成语”.
由题意,$E=ABCD+\bar ABCD+A\bar BCD+AB\bar CD+ABC\bar D$.由事件的独立性与互斥性,\[ \begin{split}P\left(E\right)&=P\left(ABCD\right)+P\left(\bar ABCD\right)+P\left(A\bar BCD\right)+P\left(AB\bar CD\right)+P\left(ABC\bar D\right)\\&=P\left(A\right)P\left(B\right)P\left(C\right)P\left(D\right)+P\left(\bar A\right)P\left(B\right)P\left(C\right)P\left(D\right)+P\left(A\right)P\left(\bar B\right)P\left(C\right)P\left(D\right)\\&+P\left(A\right)P\left(B\right)P\left(\bar C\right)P\left(D\right)+P\left(A\right)P\left(B\right)P\left(C\right)P\left(\bar D\right)\\&=\dfrac{3}{4}\times \dfrac{2}{3}\times \dfrac{3}{4}\times \dfrac{2}{3}+2\times \left(\dfrac{1}{4}\times \dfrac{2}{3}\times \dfrac{3}{4}\times\dfrac{2}{3}+\dfrac{3}{4}\times \dfrac{1}{3}\times \dfrac{3}{4}\times \dfrac{2}{3}\right)\\&=\dfrac{2}{3}\end{split} \]所以“星队”至少猜对 $3$ 个成语的概率为 $\dfrac{2}{3}$. -
“星队”两轮得分之和 $X$ 的分布列和数学期望 $EX$.标注答案分布列为 $ \begin{array}{|c|c|c|c|c|c|c|}\hline X&0&1&2&3&4&6\\ \hline P &\dfrac{1}{144}&\dfrac{5}{72}&\dfrac{25}{144}&\dfrac{1}{12}&\dfrac{5}{12}&\dfrac{1}{4}\\ \hline\end{array} $,数学期望为 $ \dfrac{23}{6} $解析本题考查离散型随机变量的数字特征.由题意,随机变量 $X$ 可能的取值为 $0$,$1$,$2$,$3$,$4$,$6$.
由事件的独立性与互斥性,得\[ \begin{split}&P\left(X=0\right)=\dfrac{1}{4}\times \dfrac{1}{3}\times \dfrac{1}{4}\times \dfrac{1}{3}=\dfrac{1}{144},\\&P\left(X=1\right)=2\times
\left(\dfrac{3}{4}\times \dfrac{1}{3}\times \dfrac{1}{4}\times\dfrac{1}{3}+\dfrac{1}{4}\times \dfrac{2}{3}\times \dfrac{1}{4}\times \dfrac{1}{3}\right)=\dfrac{5}{72},\\&P\left(X=2\right)=\dfrac{3}{4}\times \dfrac{1}{3}\times \dfrac{3}{4}\times \dfrac{1}{3}+\dfrac{3}{4}\times \dfrac{1}{3}\times \dfrac{1}{4}\times \dfrac{2}{3}+
\dfrac{1}{4}\times \dfrac{2}{3}\times \dfrac{3}{4}\times \dfrac{1}{3}+\dfrac{1}{4}\times \dfrac{2}{3}\times \dfrac{1}{4}\times \dfrac{2}{3}=\dfrac{25}{144},\\&P\left(X=3\right)=
\dfrac{3}{4}\times \dfrac{2}{3}\times \dfrac{1}{4}\times \dfrac{1}{3}+\dfrac{1}{4}\times \dfrac{1}{3}\times \dfrac{3}{4}\times \dfrac{2}{3}=\dfrac{1}{12},\\&P\left(X=4\right)=2\times \left(\dfrac{3}{4}\times \dfrac{2}{3}\times \dfrac{3}{4}\times\dfrac{1}{3}+\dfrac{3}{4}\times \dfrac{2}{3}\times \dfrac{1}{4}\times \dfrac{2}{3}\right)=\dfrac{5}{12},\\&P\left(X=6\right)=\dfrac{3}{4}\times \dfrac{2}{3}\times \dfrac{3}{4}\times \dfrac{2}{3}=\dfrac{1}{4}.\end{split} \]可得,随机变量 $X$ 的分布列为\[ \begin{array}{|c|c|c|c|c|c|c|}\hline X&0&1&2&3&4&6\\ \hline P &\dfrac{1}{144}&\dfrac{5}{72}&\dfrac{25}{144}&\dfrac{1}{12}&\dfrac{5}{12}&\dfrac{1}{4}\\ \hline\end{array} \]所以,数学期望\[EX=0\times \dfrac{1}{144}+1\times \dfrac{5}{72}+2\times \dfrac{25}{144}+3\times \dfrac{1}{12}+4\times \dfrac{5}{12}+6\times \dfrac{1}{6}=\dfrac{23}{6}.\]
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2