已知数列 $\left\{ {a_n} \right\}$ 满足 ${a_1} = 1$,$\left| {{a_{n + 1}} - {a_n}} \right| = {p^n}$,$n \in {{\mathbb{N}}^*}$.
【难度】
【出处】
2014年高考湖南卷(理)
【标注】
-
若 $\left\{ {a_n} \right\}$ 是递增数列,且 ${a_1}$,$2{a_2}$,$3{a_3}$ 成等差数列,求 $p$ 的值;标注答案$p = \dfrac{1}{3}$.解析本题主要考查等差的基本量的求法和数列的单调性.根据递增数列,去掉绝对值是解题的关键.因为 $\left\{ {a_n} \right\}$ 是递增数列,所以\[{a_{n + 1}} - {a_n} = \left| {{a_{n + 1}} - {a_n}} \right| = {p^n}.\]而 ${a_1} = 1$,因此\[{a_2} = p+1 , {a_3} = p^2 + p + 1 . \]又 ${a_1}$,$2{a_2}$,$3{a_3}$ 成等差数列,所以\[4{a_2}= {a_1} + 3{a_3},\]因而\[3p^2 -p=0,\]解得\[p = \dfrac{1}{3},p = 0.\]当 $p = 0$ 时,${a_{n + 1}} = {a_n}$,这与 $\left\{ {a_n} \right\}$ 是递增数列矛盾.故 $p = \dfrac{1}{3}$.
-
若 $p = \dfrac{1}{2}$,且 $\left\{ {{a_{2n - 1}}} \right\}$ 是递增数列,$\left\{ {{a_{2n}}} \right\}$ 是递减数列,求数列 $\left\{ {a_n} \right\}$ 的通项公式.标注答案${a_n} = \dfrac{4}{3} + \dfrac{1}{3} \cdot \dfrac{{{{\left( - 1\right)}^n}}}{{{2^{n - 1}}}}$.解析要求通项公式,需先确定递推公式,结合题中条件,可分奇偶确定递推,实际上,还是为了去掉绝对值.由于 $\left\{ {{a_{2n - 1}}} \right\}$ 是递增数列,因而 ${a_{2n + 1}} - {a_{2n - 1}} > 0$,于是\[\left({a_{2n+1}}-{a_{2n}}\right)+\left({a_{2n}}-{a_{2n-1}}\right)>0. \quad \cdots \cdots ① \]但 $\dfrac{1}{{{2^{2n}}}} < \dfrac{1}{{{2^{2n - 1}}}}$,所以\[\left| {{a_{2n + 1}} - {a_{2n}}} \right| < \left| {{a_{2n}} - {a_{2n - 1}}} \right|. \quad \cdots \cdots ② \]由 $ ①② $ 知,${a_{2n}} - {a_{2n - 1}} > 0$,因此\[{a_{2n}} - {a_{2n - 1}} = {\left(\dfrac{1}{2}\right)^{2n - 1}} = \dfrac{{{{\left( - 1\right)}^{2n}}}}{{{2^{2n - 1}}}}. \quad \cdots \cdots ③ \]因为 $\left\{ {{a_{2n}}} \right\}$ 是递减数列,同理可得 ${a_{2n + 1}} - {a_{2n}} < 0$,故\[{a_{2n + 1}} - {a_{2n}} = - {\left( {\dfrac{1}{2}} \right)^{2n}} = \dfrac{{{{\left( - 1\right)}^{2n + 1}}}}{{{2^{2n}}}}. \quad \cdots \cdots ④ \]由 $ ③④ $ 即知,${a_{n + 1}} - {a_n} = \dfrac{{{{\left( - 1\right)}^{n + 1}}}}{2^n}$,于是\[\begin{split}{a_n} & \overset{\left[a\right]}= {a_1} + \left({a_2} - {a_1}\right) + \left({a_3} - {a_2}\right) + \cdots + \left({a_n} - {a_{n - 1}}\right)
\\&= 1 + \dfrac{1}{2} - \dfrac{1}{2^2} + \cdots + \dfrac{{{{\left( - 1\right)}^n}}}{{{2^{n - 1}}}}
\\&= 1 + \dfrac{1}{2} \cdot \dfrac{{1 - {{\left( - \frac{1}{2}\right)}^{n - 1}}}}{{1 + \frac{1}{2}}}
\\& = \dfrac{4}{3} + \dfrac{1}{3} \cdot \dfrac{{{{\left( - 1\right)}^n}}}{{{2^{n - 1}}}}.\end{split}\](推导中用到[a])
故数列 $\left\{ {a_n} \right\}$ 的通项公式为 ${a_n} = \dfrac{4}{3} + \dfrac{1}{3} \cdot \dfrac{{{{\left( - 1\right)}^n}}}{{{2^{n - 1}}}}$.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2