已知函数 $f\left(x\right) = A\sin \left(x + \dfrac{{\mathrm{\mathrm \pi} } }{4}\right)$,$x \in {\mathbb {R}}$,且 $f\left(\dfrac{5{\mathrm{\mathrm \pi} }}{12} \right) = \dfrac{3}{2}$.
【难度】
【出处】
2014年高考广东卷(理)
【标注】
-
求 $A$ 的值;标注答案$A = \sqrt 3 $.解析本小问属于基础题,考查任意角的三角函数的概念.由题意知\[f\left(\dfrac{5{\mathrm \pi} }{12}\right) = A\sin \left(\dfrac{5{\mathrm{\mathrm \pi} }}{12} + \dfrac{\mathrm \pi} {4}\right) = \dfrac{3}{2},\]于是\[A\sin \dfrac{2}{3}{\mathrm \pi} = \dfrac{3}{2},\]所以 $A = \sqrt 3 $.
-
若 $f\left(\theta \right) + f\left( - \theta \right) = \dfrac{3}{2}$,$\theta \in \left(0,\dfrac{{\mathrm{\mathrm \pi} } }{2}\right)$,求 $f\left(\dfrac{3}{4}{\mathrm \pi} - \theta \right)$.标注答案$f\left(\dfrac{3}{4}{\mathrm{\mathrm \pi} } - \theta \right) = \dfrac{{\sqrt {30} }}{4}$.解析本小问属于化简求值题,要求的值一定是通过所给的条件能求出,所以需要先化简条件,然后解题.由(1)知 $f\left(x\right)=\sqrt 3\sin\left(x+\dfrac{\mathrm \pi} {4}\right)$,故\[\begin{split}f\left(\theta \right) + f\left( - \theta \right) &=\sqrt 3 \sin \left(\theta + \dfrac{\mathrm \pi} {4}\right) + \sqrt 3 \sin \left(\dfrac{\mathrm \pi} {4} - \theta \right)\\&\overset{\left[a\right]}= \sqrt 3\left[\left(\dfrac{\sqrt 2}{2}\sin \theta+\dfrac{\sqrt 2}{2}\cos\theta\right)+\left(\dfrac{\sqrt 2}{2}\cos\theta -\dfrac{\sqrt 2}{2}\sin\theta\right)\right]\\&=\dfrac{\sqrt 6}{2}\cos\theta \\&= \dfrac{3}{2}.\end{split}\](推导中用到:[a])
解得\[\cos\theta=\dfrac{\sqrt 6}{4}.\]又因为 $\theta\in\left(0,\dfrac{\mathrm \pi} {2}\right)$,所以由同角三角函数的基本关系可得\[\sin\theta=\sqrt{1-\cos^2\theta}=\dfrac{\sqrt {10}}{4}.\]从而\[f\left(\dfrac{3}{4}{\mathrm{\mathrm \pi} } - \theta \right) = \sqrt 3 \sin \left({\mathrm \pi} - \theta \right) \overset{\left[b\right]}= \sqrt 3 \sin \theta = \dfrac{{\sqrt {30} }}{4}.\](推导中用到:[b])
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2