已知等比数列 $\left\{ {a_n} \right\}$ 满足:$\left| {{a_2} - {a_3}} \right| = 10$,${a_1}{a_2}{a_3} = 125$.
【难度】
【出处】
2013年高考湖北卷(理)
【标注】
-
求数列 $\left\{ {a_n} \right\}$ 的通项公式;标注答案${a_n} = \dfrac{5}{3} \cdot {3^{n - 1}}$ 或 ${a_n} = - 5 \cdot {\left( { - 1} \right)^{n - 1}}$解析本题代入等比数列的基本量即可计算.设等比数列 $\left\{ {a_n} \right\}$ 的公比为 $q$,则由已知可得\[\begin{cases}
a_1^3{q^3} = 125, \\
\left|{a_1}q - {a_1}{q^2} \right| = 10, \\
\end{cases}\]解得\[\begin{cases}{a_1} = \dfrac{5}{3}, \\
q = 3, \\
\end{cases}或\begin{cases}{a_1} = - 5, \\
q = - 1. \\
\end{cases}\]故\[{a_n} = \dfrac{5}{3} \cdot {3^{n - 1}}或{a_n} = - 5 \cdot {\left( { - 1} \right)^{n - 1}}.\] -
是否存在正整数 $m$,使得 $\dfrac{1}{a_1} + \dfrac{1}{a_2} + \cdots + \dfrac{1}{a_m} \geqslant 1$?若存在,求 $m$ 的最小值;若不存在,说明理由.标注答案不存在.解析$\{\dfrac 1{a_n}\}$ 仍然是等比数列,按照等比求和之后再讨论.若 ${a_n} = \dfrac{5}{3} \cdot {3^{n - 1}}$,则\[\dfrac{1}{a_n} = \dfrac{3}{5} \cdot {\left( {\dfrac{1}{3}} \right)^{n - 1}},\]故数列 $\left\{ {\dfrac{1}{a_n}} \right\}$ 是首项为 $\dfrac{3}{5}$,公比为 $\dfrac{1}{3}$ 的等比数列.从而\[\begin{split}\dfrac{1}{a_1} + \dfrac{1}{a_2} + \cdots + \dfrac{1}{a_m} &= \dfrac{{\dfrac{3}{5} \cdot \left[ {1 - {{\left( {\dfrac{1}{3}} \right)}^m}} \right]}}{{1 - \dfrac{1}{3}}} \\&= \dfrac{9}{10} \cdot \left[ {1 - {{\left( {\dfrac{1}{3}} \right)}^m}} \right] \\& < \dfrac{9}{10} < 1.\end{split}\]若 ${a_n} = \left( { - 5} \right) \cdot {\left( { - 1} \right)^{n - 1}}$,则\[\dfrac{1}{a_n} = - \dfrac{1}{5}{\left( { - 1} \right)^{n - 1}},\]故数列 $\left\{ {\dfrac{1}{a_n}} \right\}$ 是首项为 $ - \dfrac{1}{5}$,公比为 $ - 1$ 的等比数列,从而\[\dfrac{1}{a_1} + \dfrac{1}{a_2} + \cdots + \dfrac{1}{a_m} = \begin{cases}- \dfrac{1}{5},m = 2k - 1\left( {k \in {{\mathbb{N}}_ + }} \right), \\
0,m = 2k\left( {k \in {{\mathbb{N}}_ + }} \right).
\end{cases}\]故 $\dfrac{1}{a_1} + \dfrac{1}{a_2} + \cdots + \dfrac{1}{a_m} < 1 $.
综上,对任意正整数 $m$,总有\[\dfrac{1}{a_1} + \dfrac{1}{a_2} + \cdots + \dfrac{1}{a_m} < 1.\]故不存在正整数 $m$,使得 $\dfrac{1}{a_1} + \dfrac{1}{a_2} + \cdots + \dfrac{1}{a_m} \geqslant 1$ 成立.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2