在公差为 $d$ 的等差数列 $\left\{ {a_n}\right\} $ 中,已知 ${a_1} = 10$,且 ${a_1}$,$2{a_2} + 2$,$5{a_3}$ 成等比数列.
【难度】
【出处】
2013年高考浙江卷(文)
【标注】
  • 知识点
    >
    数列
    >
    等比数列及其性质
    >
    等比数列的对称互补性
  • 知识点
    >
    数列
    >
    等差数列及其性质
    >
    等差数列的定义与通项
  • 知识点
    >
    数列
    >
    等差数列及其性质
    >
    等差数列的前n项和
  1. 求 $d$,${a_n}$;
    标注
    • 知识点
      >
      数列
      >
      等比数列及其性质
      >
      等比数列的对称互补性
    • 知识点
      >
      数列
      >
      等差数列及其性质
      >
      等差数列的定义与通项
    答案
    $d = - { 1 }$ 或 $ d = { 4 }$.
    ${a_n} = - n + 11\left( {n \in {{\mathbb{N}}^*}} \right)$ 或 $ {a_n} = { 4 }n + { 6 }\left( {n \in {{\mathbb{N}}^*}} \right)$.
    解析
    代入基本量求解即可.由 ${a_1}$,$2{a_2} + 2$,$5{a_3}$ 成等比数列得\[{a_{ 1 }} \cdot { 5 }{a_{ 3 }} = {\left( {{ 2 }{a_{ 2 }} + { 2 }} \right)^{ 2 }},\]由 $\left\{ {a_n} \right\}$ 为公差为 $d$ 的等差数列得\[5a_1\left(a_1+2d\right)=4\left(a_1+d+1\right)^2,\]又 ${a_1} = 10$,可解得\[d = - { 1 } 或 d = { 4 }.\]所以\[{a_n} = - n + 11\left( {n \in {{\mathbb{N}}^*}} \right) 或 {a_n} = { 4 }n + { 6 }\left( {n \in {{\mathbb{N}}^*}} \right).\]
  2. 若 $d < 0$,求 $\left| {a_1} \right| + \left| {a_2} \right| + \left| {a_3} \right| + \cdots + \left| {a_n} \right|$.
    标注
    • 知识点
      >
      数列
      >
      等差数列及其性质
      >
      等差数列的前n项和
    答案
    $\left| {{a_{ 1 }}} \right| + \left| {{a_{ 2 }}} \right| + \left| {{a_{ 3 }}} \right| + \cdots + \left| {a_n} \right| = {\begin{cases}
    - \dfrac{1}{2}{n^2} + \dfrac{21}{2}n,&n \leqslant 11, \\
    \dfrac{1}{2}{n^2} - \dfrac{21}{2}n + 110,&n \geqslant 12 .\\
    \end{cases}}$
    解析
    带绝对值时,注意分类讨论.设数列 $\left\{ {a_n} \right\}$ 的前 $n$ 项和为 ${S_n}$.因为 $d < 0$,由(1)得\[d = - { 1 },{a_n} = - n + 11.\]当 $n \leqslant 11$ 时\[a_n\geqslant 0,\]所以当 $n \leqslant 11$ 时,\[\begin{split}&\left| {a_1} \right| + \left| {a_2} \right| + \left| {a_3} \right| + \cdots + \left| {a_n} \right|\\& = {S_n}\\&\overset{\left[a\right]} = - \dfrac{1}{2}{n^2} + \dfrac{21}{2}n;\end{split}\](推导中用到:[a])
    当 $n \geqslant 12$ 时,\[\begin{split}&\left| {{a_{ 1 }}} \right| + \left| {{a_{ 2 }}} \right| + \left| {{a_{ 3 }}} \right| + \cdots + \left| {a_n} \right|\\ &= - {S_n} + { 2 }{S_{ 11 }} \\&\overset{\left[b\right]}= \dfrac{1}{2}{n^{ 2 }} - \dfrac{21}{2}n + 110.\end{split}\](推导中用到:[b])综上所述,\[\left| {{a_{ 1 }}} \right| + \left| {{a_{ 2 }}} \right| + \left| {{a_{ 3 }}} \right| + \cdots + \left| {a_n} \right| = {\begin{cases}- \dfrac{1}{2}{n^2} + \dfrac{21}{2}n,&n \leqslant 11, \\
    \dfrac{1}{2}{n^2} - \dfrac{21}{2}n + 110,&n \geqslant 12 .\\
    \end{cases}}\]
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2
0.109556s