设数列 $\left\{ {a_n}\right\} $ 的前 $n$ 项和为 ${S_n}$,满足 $2{S_n} = {a_{n + 1}} - {2^{n + 1}} + 1$,$n \in {{\mathbb{N}}^*}$,且 ${a_1} , {a_2} + 5 , {a_3}$ 成等差数列.
【难度】
【出处】
2012年高考广东卷(理)
【标注】
-
求 ${a_1}$ 的值;标注答案解析因为 ${a_1},{a_2} + 5,{a_3}$ 成等差数列,所以\[ 2\left({a_2} + 5\right) ={a_1} + {a_3},\]又\[2{S_n} = {a_{n + 1}} - {2^{n + 1}} + 1,\]所以\[\begin{split}2S_1&=a_2-2^2+1,\\2S_2&=a_3-2^3+1,\end{split}\]所以\[2a_1=a_2-3,\\2\left(a_1+a_2\right)=a_3-7.\]由\[\begin{cases}2\left(a_2+5\right)=a_1+a_3,\\ 2a_1=a_2-3,\\ 2\left(a_1+a_2\right)=a_3-7,\end{cases}\]得\[\begin{cases}a_1=1,\\a_2=5,\\a_3=19,\end{cases}\]所以\[a_1=1.\]
-
求数列 $\left\{ {a_n}\right\} $ 的通项公式.标注答案解析因为\[2S_n=a_{n+1}-2^{n+1}+1 ,\quad \cdots \cdots ① \]所以当 $n\geqslant2$ 时,\[2S_{n-1}=a_n-2^{n}+1, \quad \cdots \cdots ② \]$ ① - ② $ 得\[2a_n=a_{n+1}-a_n-2^{n+1}+2^n,\]所以\[a_{n+1}=3a_n+2^n.\]两边同除以 $2^{n+1}$ 得\[\dfrac{a_{n+1}}{2^{n+1}}=\dfrac32\cdot\dfrac{a_n}{2^n}+\dfrac12,\]所以\[\dfrac{a_{n+1}}{2^{n+1}}+1=\dfrac32\left(\dfrac{a_n}{2^n}+1\right).\]又由(1)知\[\dfrac{a_2}{2^2}+1=\dfrac32\left(\dfrac{a_1}{2^1}+1\right),\]所以数列 $\left\{\dfrac{a_n}{2^n}+1\right\}$ 是以 $\dfrac32$ 为首项,$\dfrac32$ 为公比的等比数列,所以\[\dfrac{a_n}{2^n}+1=\dfrac32\cdot\left(\dfrac32\right)^{n-1}=\left(\dfrac32\right)^n,\]所以\[a_n=3^n-2^n,\]即数列 $\left\{a_n\right\}$ 的通项公式为 $ a_n=3^n-2^n $.
-
证明:对一切正整数 $n$,有 $\dfrac{1}{a_1} + \dfrac{1}{a_2} + \dfrac{1}{a_3} + \cdots + \dfrac{1}{a_n} < \dfrac{3}{2}$.标注答案解析当 $n \geqslant 3$ 时,\[\begin{split} {a_n} &= {3^n} - {2^n} = {\left(1 + 2\right)^n} - {2^n} \\
&= 1 + {\mathrm{C}}_n^1 \cdot 2 + {\mathrm{C}}_n^2 \cdot {2^2} + \cdots + {\mathrm{C}}_n^{n - 1} \cdot {2^{n - 1}} + {2^n} - {2^n}\\
&= 1 + {\mathrm{C}}_n^1 \cdot 2 + {\mathrm{C}}_n^2 \cdot {2^2} + \cdots + {\mathrm{C}}_n^{n - 1} \cdot {2^{n - 1}}\\
& > {\mathrm{C}}_n^2 \cdot {2^2} = 2n\left(n - 1\right)\end{split}\]又因为 ${a_2} = 5 > 2 \times 2 \times \left(2 - 1\right)$,
所以 ${a_n} > 2n\left(n - 1\right),n \geqslant 2$;
所以 $\dfrac{1}{a_n} < \dfrac{1}{2n\left(n - 1\right)} = \dfrac{1}{2}\left( {\dfrac{1}{n - 1} - \dfrac{1}{n}} \right)$;
所以\[\begin{split} &\dfrac{1}{a_1} + \dfrac{1}{a_2} + \dfrac{1}{a_3} + \cdots + \dfrac{1}{a_n}\\ < &1 + \dfrac{1}{2}\left({1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \cdots + \dfrac{1}{n - 1} - \dfrac{1}{n}} \right)\\= &1 + \dfrac{1}{2}\left({1 - \dfrac{1}{n}} \right)\\< &\dfrac{3}{2}.\end{split}\]
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2
问题3
答案3
解析3
备注3