正整数数列 $\{a_n\}$ 满足 $a_2=15, 2+\frac{4}{a_n+1}<\frac{a_n}{a_n-4n+2}+\frac{a_n}{a_{n+1}-4n-2}<2+\frac{4}{a_n-1}$($n\in\mathbb{N^{\ast}}$).设 $S_n=\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n}$,试求 $S_n$ 的表达式.
【难度】
【出处】
全国高中数学联赛模拟试题(5)
【标注】
【答案】
略
【解析】
先求通项 $a_n$.
当 $n=1$ 时,题设条件化为$$2+\frac{4}{a_1+1}<\frac{a_1}{a_1-2}+\frac{a_1}{9}<2+\frac{4}{a_1-1}.~~~ ① $$于是,$a_1\neq 1,2$,即 $a_1\geqslant 3$.
由 $ ① $ 两端分别得到$$\frac{2}{a_1-2}+\frac{a_1}{9}-\frac{4}{a_1+1}>1,~~~~~ ② $$$$\frac{2}{a_1-2}+\frac{a_1}{9}-\frac{4}{a_1-1}<1.~~~~~ ③ $$由式 ②,得$$a_1^3-10a_1^2-11a_1+108>0\Rightarrow (a_1-10)(a_1^2-11)>2.$$因此,$a_1\leqslant 3$ 或 $a_1\geqslant 11$.
由式 ③,得$$a_1^3-12a_1^2+11a_1+36<0\Rightarrow (12-a_1)(a_1^2+11)>168.$$因此,$3\leqslant a_1\leqslant 10.$.
综上可得,$a_1=3$.
当 $n=2$ 时,题设条件化为$$2+\frac{1}{4}<\frac{15}{9}+\frac{15}{a_3-10}<2+\frac{2}{7}\Rightarrow \frac{7}{12}<\frac{15}{a_3-10}<\frac{13}{21}.$$故$$\frac{315}{13}<a_3-10<\frac{180}{7}\Rightarrow 34+\frac{3}{13}<a_3<35+\frac{5}{7}.$$所以 $a_3=35$.
注意到 $a_1+1=4=2^2, a_2+1=16=4^2,a_3+1=36=6^2$.接下来证明,$$a_n=(2n)^2-1.$$式 ④ 对 $n=1,2,3$ 已经成立.设式 ④ 对 $n$($n\geqslant 3$)成立,考虑 $n+1$ 的情形.
由题设得$$\begin{aligned}
&2+\frac{1}{n^2}<\frac{2n+1}{2n-1}+\frac{4n^2-1}{a_{n+1}-4n-2}<2+\frac{2}{2n^2-1}\\
&\Rightarrow 1+\frac{1}{n^2}-\frac{2}{2n-1}<\frac{4n^2-1}{a_{n+1}-4n-2}<1+\frac{2}{2n^2-1}-\frac{2}{2n-1}\\
&\Rightarrow \frac{2n^3-3n^2+2n-1}{n^2(2n-1)}<\frac{(2n+1)(2n-1)}{a_{n+1}-2(2n+1)}<\frac{4n^3-6n^2+2n+1}{(2n-1)(2n^2-1)}\\
&\Rightarrow \frac{(2n-1)^2(2n^2-1)}{4n^3-6n^2+2n+1}<\frac{a_{n+1}}{2n+1}-2<\frac{n^2(2n-1)^2}{2n^3-3n^2+2n-1}\\
&\Rightarrow \frac{(2n+1)(4n^3-6n^2+2n+1)-2}{4n^3-6n^2+2n+1}<\frac{a_{n+1}}{2n+1}-2<\frac{(2n+1)(2n^3-3n^2+2n-1)+1}{2n^3-3n^2+2n-1}\\
&\Rightarrow (2n+1)-\frac{2}{4n^3-6n^2+2n+1}<\frac{a_{n+1}}{2n+1}-2<(2n+1)+\frac{1}{2n^3-3n^2+2n-1}\\
&\Rightarrow (2n+1)^2+2(2n+1)-\frac{2(2n+1)}{4n^3-6n^2+2n+1}<a_{n+1}<(2n+1)^2+2(2n+1)+\frac{2n+1}{2n^3-3n^2+2n-1},\\
\end{aligned}$$从而$$(2n+1)^2+2(2n+1)-1<a_{n+1}<(2n+1)^2+2(2n+1)+1.$$因为 $a_{n+1}$ 是整数,所以$$a_{n+1}=(2n+1)^2+2(2n+1)=(2(n+1))^2-1.$$故$$S_n=\sum^n_{k=1}\frac{1}{a_k}=\frac{1}{2}\sum^n_{k=1}\left(\frac{1}{2k-1}-\frac{1}{2k+1}\right)=\frac{1}{2}\left(1-\frac{1}{2n+1}\right)=\frac{n}{2n+1}.$$
当 $n=1$ 时,题设条件化为$$2+\frac{4}{a_1+1}<\frac{a_1}{a_1-2}+\frac{a_1}{9}<2+\frac{4}{a_1-1}.~~~ ① $$于是,$a_1\neq 1,2$,即 $a_1\geqslant 3$.
由 $ ① $ 两端分别得到$$\frac{2}{a_1-2}+\frac{a_1}{9}-\frac{4}{a_1+1}>1,~~~~~ ② $$$$\frac{2}{a_1-2}+\frac{a_1}{9}-\frac{4}{a_1-1}<1.~~~~~ ③ $$由式 ②,得$$a_1^3-10a_1^2-11a_1+108>0\Rightarrow (a_1-10)(a_1^2-11)>2.$$因此,$a_1\leqslant 3$ 或 $a_1\geqslant 11$.
由式 ③,得$$a_1^3-12a_1^2+11a_1+36<0\Rightarrow (12-a_1)(a_1^2+11)>168.$$因此,$3\leqslant a_1\leqslant 10.$.
综上可得,$a_1=3$.
当 $n=2$ 时,题设条件化为$$2+\frac{1}{4}<\frac{15}{9}+\frac{15}{a_3-10}<2+\frac{2}{7}\Rightarrow \frac{7}{12}<\frac{15}{a_3-10}<\frac{13}{21}.$$故$$\frac{315}{13}<a_3-10<\frac{180}{7}\Rightarrow 34+\frac{3}{13}<a_3<35+\frac{5}{7}.$$所以 $a_3=35$.
注意到 $a_1+1=4=2^2, a_2+1=16=4^2,a_3+1=36=6^2$.接下来证明,$$a_n=(2n)^2-1.$$式 ④ 对 $n=1,2,3$ 已经成立.设式 ④ 对 $n$($n\geqslant 3$)成立,考虑 $n+1$ 的情形.
由题设得$$\begin{aligned}
&2+\frac{1}{n^2}<\frac{2n+1}{2n-1}+\frac{4n^2-1}{a_{n+1}-4n-2}<2+\frac{2}{2n^2-1}\\
&\Rightarrow 1+\frac{1}{n^2}-\frac{2}{2n-1}<\frac{4n^2-1}{a_{n+1}-4n-2}<1+\frac{2}{2n^2-1}-\frac{2}{2n-1}\\
&\Rightarrow \frac{2n^3-3n^2+2n-1}{n^2(2n-1)}<\frac{(2n+1)(2n-1)}{a_{n+1}-2(2n+1)}<\frac{4n^3-6n^2+2n+1}{(2n-1)(2n^2-1)}\\
&\Rightarrow \frac{(2n-1)^2(2n^2-1)}{4n^3-6n^2+2n+1}<\frac{a_{n+1}}{2n+1}-2<\frac{n^2(2n-1)^2}{2n^3-3n^2+2n-1}\\
&\Rightarrow \frac{(2n+1)(4n^3-6n^2+2n+1)-2}{4n^3-6n^2+2n+1}<\frac{a_{n+1}}{2n+1}-2<\frac{(2n+1)(2n^3-3n^2+2n-1)+1}{2n^3-3n^2+2n-1}\\
&\Rightarrow (2n+1)-\frac{2}{4n^3-6n^2+2n+1}<\frac{a_{n+1}}{2n+1}-2<(2n+1)+\frac{1}{2n^3-3n^2+2n-1}\\
&\Rightarrow (2n+1)^2+2(2n+1)-\frac{2(2n+1)}{4n^3-6n^2+2n+1}<a_{n+1}<(2n+1)^2+2(2n+1)+\frac{2n+1}{2n^3-3n^2+2n-1},\\
\end{aligned}$$从而$$(2n+1)^2+2(2n+1)-1<a_{n+1}<(2n+1)^2+2(2n+1)+1.$$因为 $a_{n+1}$ 是整数,所以$$a_{n+1}=(2n+1)^2+2(2n+1)=(2(n+1))^2-1.$$故$$S_n=\sum^n_{k=1}\frac{1}{a_k}=\frac{1}{2}\sum^n_{k=1}\left(\frac{1}{2k-1}-\frac{1}{2k+1}\right)=\frac{1}{2}\left(1-\frac{1}{2n+1}\right)=\frac{n}{2n+1}.$$
答案
解析
备注