已知 ${a^2} + a - 1 = 0$,${b^2} + b - 1 = 0$,$a < b$,设 ${a_1} = 1$,${a_2} = b$,${a_{n + 1}} + {a_n} - {a_{n - 1}} = 0$($n \geqslant 2$),${b_n} = {a_{n + 1}} - a \cdot {a_n}$.
【难度】
【出处】
2009年华南理工大学自主招生保送生选拔考试
【标注】
-
证明:数列 $\left\{ {{b_n}} \right\}$ 是等比数列;标注答案略解析因为$$\begin{split}\dfrac{{{b_{n + 1}}}}{{{b_n}}} &= \dfrac{{{a_{n + 2}} - a \cdot {a_{n + 1}}}}{{{a_{n + 1}} - a \cdot {a_n}}}\\ &= \dfrac{{{a_{n + 2}} - a \cdot {a_{n + 1}}}}{{{a_{n + 1}} - a\left( {{a_{n + 1}} + {a_{n + 2}}} \right)}}\\ &= \dfrac{{{a_{n + 2}} - a \cdot {a_{n + 1}}}}{{\left( {1 - a} \right){a_{n + 1}} - a \cdot a{ _{n + 2}}}}.\end{split}$$注意到$$1 - a = {a^2},$$所以$$\dfrac{{{b_{n + 1}}}}{{{b_n}}} = - \dfrac{1}{a},$$又 ${b_1} \ne 0$,所以 $\left\{ {{b_n}} \right\}$ 是公比为 $ - \dfrac{1}{a}$ 的等比数列.
-
求数列 $\left\{ {{a_n}} \right\}$ 的通项;标注答案${a_n} = {b^{n - 1}}$解析考虑数列 $\left\{ {{x_n}} \right\}$,其中$${x_n} = {a_{n + 1}} - b \cdot {a_n},$$则与 $(1)$ 类似,可得$${x_{n + 1}} = - \dfrac{1}{b}{x_n},$$而 ${x_1} = 0$,所以$${a_{n + 1}} = b \cdot {a_n},$$于是 $\left\{ {{a_n}} \right\}$ 是公比为 $b$ 的等比数列,故$${a_n} = {b^{n - 1}}.$$
-
设 ${c_1} = {c_2} = 1$,${c_{n + 2}} = {c_{n + 1}} + {c_n}$,证明:当 $n \geqslant 3$ 时,有 ${\left( { - 1} \right)^n}\left( {{c_{n - 2}}a + {c_n}b} \right) = {b^{n - 1}}$.标注答案略解析$a , b$ 是方程 ${x^2} + x - 1 = 0$ 的两根,所以$$a + b = - 1, ab = - 1,$$于是$${\left({ - 1} \right)^n}\left({{c_{n - 2}}a + {c_n}b} \right)= {b^{n - 1}},$$即$${\left({ - 1} \right)^n}\left[ {{c_{n - 2}}\left({ - 1 - b} \right)+ \left({{c_{n - 1}} + {c_{n - 2}}} \right)b} \right] = {b^{n - 1}},$$于是$${\left({ - 1} \right)^n}\left({b \cdot {c_{n - 1}} - {c_{n - 2}}} \right)= {b^{n - 1}},$$这等价于$${\left({ - 1} \right)^{n - 1}}\left({{c_{n - 1}} + a \cdot {c_{n - 2}}} \right)= a \cdot {\left({ - \frac{1}{a}} \right)^{n - 1}},$$故$${c_{n - 1}} + a \cdot {c_{n - 2}} = {\left({\frac{1}{a}} \right)^{n - 2}},$$也即需要证明$${c_{n + 1}} + a \cdot {c_n} = {\left( {\dfrac{1}{a}} \right)^n}.$$与 $(1)$ 类似,因为$${c_{n + 2}} - {c_{n + 1}} - {c_n} = 0,$$所以考虑方程 ${x^2} - x - 1 = 0$,设 ${x_1} , {x_2}$ 为其两根,不妨设 ${x_1} = - a$,${x_2} = - b$,则$${y_n} = {c_{n + 1}} - {x_1} \cdot {c_n} = {c_{n + 1}} + a \cdot {c_n} $$是公比为 $ - \dfrac{1}{{{x_1}}} = \dfrac{1}{a} $ 的等比数列.因此只需要证明$$ {c_2} + a \cdot {c_1} = {\left({\dfrac{1}{a}} \right)^1} ,$$也即 $ 1 + a = \dfrac{1}{a} $,$ {a^2} + a - 1 = 0$,而这显然成立.
因此原命题得证.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2
问题3
答案3
解析3
备注3