设 $[x]$ 表示不超过实数 $x$ 的最大整数.已知$$a_k=\dfrac{1}{k^2}+\dfrac{1}{k^2+1}+\cdots+\dfrac{1}{(k+1)^2-1},k=1,2,\cdots,$$试求 $\displaystyle \sum\limits_{k=1}^{n}{\left(\left[\dfrac{1}{a_k}\right]+\left[\dfrac{1}{a_k}+\dfrac12\right]\right)}$.
【难度】
【出处】
2015年全国高中数学联赛陕西省预赛(二试)
【标注】
【答案】
$\dfrac{n(n+1)}{2}$
【解析】
先证明:对任意 $x\in\mathbb R$,有$$[x]+\left[x+\dfrac12\right]=[2x]\qquad\cdots\cdots\text{ ① }$$当 $0\leqslant x-[x]<\dfrac12$ 时,$$\left[x+\dfrac12\right]=[x],[2x]=2[x],$$则$$[x]+\left[x+\dfrac12\right]=2[x]=[2x].$$当 $\dfrac12\leqslant x-[x]<1$ 时,$$\left[x+\dfrac12\right]=[x]+1,[2x]=2[x]+1,$$则有$$[x]+\left[x+\dfrac12\right]=2[x]+1=[2x].$$综上,对任意 $x\in\mathbb R$,$\text{ ① }$ 式都成立.
再证明:对任意 $k\in\mathbb N^*$,有$$\dfrac{2}{k+1}<a_k<\dfrac{2}{k}\qquad\cdots\cdots\text{ ② }$$易知,$a_k$ 的表达式共有 $2k+1$ 项,将其按前 $k$ 项和后 $k+1$ 项分成两部分和:$$a_k=a_{k_1}+a_{k_2},$$其中,\[\begin{split}&a_{k_1}=\dfrac{1}{k^2}+\dfrac{1}{k^2+1}+\cdots+\dfrac{1}{k^2+k-1},\\&a_{k_2}=\dfrac{1}{k^2+k}+\dfrac{1}{k^2+k+1}+\cdots+\dfrac{1}{(k+1)^2-1}.\end{split}\]因为\[\begin{split}&\dfrac{1}{k+1}=k\cdot\dfrac{1}{k^2+k}<a_{k_1}\leqslant k\cdot\dfrac{1}{k^2}=\dfrac1k,\\&\dfrac{1}{k+1}=(k+1)\cdot\dfrac{1}{(k+1)^2}<a_{k_2}<(k+1)\cdot\dfrac{1}{k^2+k}=\dfrac1k,\end{split}\]所以$$\dfrac{2}{k+1}<a_k=a_{k_1}+a_{k_2}<\dfrac2k,$$故对任意 $k\in\mathbb N^*$,$\text{ ② }$ 式都成立.
由 $\text{ ② }$ 式,得$$k<\dfrac{2}{a_k}<k+1,$$则 $\left[\dfrac{2}{a_k}\right]=k$.
又由 $\text{ ① }$ 式,得$$\left[\dfrac{1}{a_k}\right]+\left[\dfrac{1}{a_k}+\dfrac12\right]=\left[\dfrac{2}{a_k}\right]=k,$$故$$\displaystyle \sum\limits_{k=1}^{n}{\left(\left[\dfrac{1}{a_k}\right]+\left[\dfrac{1}{a_k}+\dfrac12\right]\right)}=\sum\limits_{k=1}^{n}{k}=\dfrac{n(n+1)}{2}.$$
再证明:对任意 $k\in\mathbb N^*$,有$$\dfrac{2}{k+1}<a_k<\dfrac{2}{k}\qquad\cdots\cdots\text{ ② }$$易知,$a_k$ 的表达式共有 $2k+1$ 项,将其按前 $k$ 项和后 $k+1$ 项分成两部分和:$$a_k=a_{k_1}+a_{k_2},$$其中,\[\begin{split}&a_{k_1}=\dfrac{1}{k^2}+\dfrac{1}{k^2+1}+\cdots+\dfrac{1}{k^2+k-1},\\&a_{k_2}=\dfrac{1}{k^2+k}+\dfrac{1}{k^2+k+1}+\cdots+\dfrac{1}{(k+1)^2-1}.\end{split}\]因为\[\begin{split}&\dfrac{1}{k+1}=k\cdot\dfrac{1}{k^2+k}<a_{k_1}\leqslant k\cdot\dfrac{1}{k^2}=\dfrac1k,\\&\dfrac{1}{k+1}=(k+1)\cdot\dfrac{1}{(k+1)^2}<a_{k_2}<(k+1)\cdot\dfrac{1}{k^2+k}=\dfrac1k,\end{split}\]所以$$\dfrac{2}{k+1}<a_k=a_{k_1}+a_{k_2}<\dfrac2k,$$故对任意 $k\in\mathbb N^*$,$\text{ ② }$ 式都成立.
由 $\text{ ② }$ 式,得$$k<\dfrac{2}{a_k}<k+1,$$则 $\left[\dfrac{2}{a_k}\right]=k$.
又由 $\text{ ① }$ 式,得$$\left[\dfrac{1}{a_k}\right]+\left[\dfrac{1}{a_k}+\dfrac12\right]=\left[\dfrac{2}{a_k}\right]=k,$$故$$\displaystyle \sum\limits_{k=1}^{n}{\left(\left[\dfrac{1}{a_k}\right]+\left[\dfrac{1}{a_k}+\dfrac12\right]\right)}=\sum\limits_{k=1}^{n}{k}=\dfrac{n(n+1)}{2}.$$
答案
解析
备注