求 $3\cos\dfrac{2\pi}5-\cos\dfrac{\pi}5$ 的值.
【难度】
【出处】
【标注】
  • 数学竞赛
    >
    三角
    >
    三角计算
  • 知识点
    >
    三角
    >
    三角恒等变换
  • 知识点
    >
    复数
    >
    复数与三角
    >
    单位根及其应用
  • 题型
    >
    三角
    >
    求三角代数式的值
【答案】
$\dfrac{-2+\sqrt 5}2$
【解析】
由\[\cos\dfrac{\pi}5+\cos\dfrac{3\pi}5+\cos\dfrac{5\pi}5+\cos\dfrac{7\pi}5+\cos\dfrac{9\pi}5=0,\]可得\[\cos\dfrac{\pi}5-\cos\dfrac{2\pi}5=\dfrac 12.\]又\[\cos\dfrac{\pi}5\cdot\cos\dfrac{2\pi}5=\dfrac{\sin\dfrac{\pi}5\cos\dfrac{\pi}5\cos\dfrac{2\pi}5}{\sin\dfrac{\pi}5}=\dfrac 14.\]于是\[\begin{split}3\cos\dfrac{2\pi}5-\cos\dfrac{\pi}5&=-2\left(\cos\dfrac{\pi}5-\cos\dfrac{2\pi}5\right)+\left(\cos\dfrac{\pi}5+\cos\dfrac{2\pi}5\right)\\
&=-1+\sqrt{\left(\dfrac 12\right)^2+4\cdot \dfrac 14}\\
&=\dfrac{-2+\sqrt 5}2.\end{split}\]
答案 解析 备注
0.109052s