设多项式 $1-x+{{x}^{2}}-{{x}^{3}}+\cdots +{{x}^{16}}-{{x}^{17}}$ 可以写成 ${{a}_{0}}+{{a}_{1}}y+{{a}_{2}}{{y}^{2}}+{{a}_{3}}{{y}^{3}}+\cdots +{{a}_{16}}{{y}^{16}}+{{a}_{17}}{{y}^{17}}$,其中 $y=x+1$,并且诸 ${{a}_{i}}$ 都是常数,求 ${{a}_{12}}$.
【难度】
【出处】
1986年第4届美国数学邀请赛(AIME)
【标注】
【答案】
816
【解析】
用 $y-1$ 替换 $x$,多项式变为
$1-\left(y-1 \right)+{{\left( y-1 \right)}^{2}}-{{\left( y-1 \right)}^{3}}+\cdots+{{\left( y-1 \right)}^{16}}-{{\left( y-1 \right)}^{17}}$,
即 $1+\left( 1-y\right)+{{\left( 1-y \right)}^{2}}+{{\left( 1-y \right)}^{3}}+\cdots +{{\left(1-y \right)}^{16}}+{{\left( 1-y \right)}^{17}}$.注意到 ${{\left(1-y \right)}^{k}}$ 中 ${{y}^{2}}$ 的系数是 $\text{C}_{k}^{2}\left( 2\leqslant k\leqslant 17 \right)$,所以所求之数为 $\text{C}_{2}^{2}+\text{C}_{3}^{2}+\text{C}_{4}^{2}+\cdots+\text{C}_{17}^{2}=\text{C}_{18}^{3}=816$.
$1-\left(y-1 \right)+{{\left( y-1 \right)}^{2}}-{{\left( y-1 \right)}^{3}}+\cdots+{{\left( y-1 \right)}^{16}}-{{\left( y-1 \right)}^{17}}$,
即 $1+\left( 1-y\right)+{{\left( 1-y \right)}^{2}}+{{\left( 1-y \right)}^{3}}+\cdots +{{\left(1-y \right)}^{16}}+{{\left( 1-y \right)}^{17}}$.注意到 ${{\left(1-y \right)}^{k}}$ 中 ${{y}^{2}}$ 的系数是 $\text{C}_{k}^{2}\left( 2\leqslant k\leqslant 17 \right)$,所以所求之数为 $\text{C}_{2}^{2}+\text{C}_{3}^{2}+\text{C}_{4}^{2}+\cdots+\text{C}_{17}^{2}=\text{C}_{18}^{3}=816$.
答案
解析
备注