给定多项式 $P\left( x \right)={{x}^{6}}-{{x}^{5}}-{{x}^{3}}-{{x}^{2}}-x$,$Q\left( x \right)={{x}^{4}}-{{x}^{3}}-{{x}^{2}}-1$,设 ${{z}_{1}} {{z}_{2}} {{z}_{3}} {{z}_{4}}$ 为 $Q\left( x \right)=0$ 的根,求 $P\left( {{z}_{1}} \right)+P\left( {{z}_{2}} \right)+P\left( {{z}_{3}} \right)+P\left( {{z}_{4}} \right)$.
【难度】
【出处】
2003年第21届美国数学邀请赛Ⅱ(AIMEⅡ)
【标注】
【答案】
6
【解析】
应用多项式除法,可得 $P\left( x \right)=Q\left( x\right)\left( {{x}^{2}}+1 \right)+{{x}^{2}}-x+1$.
因此 $\displaystyle \sum\limits_{i=1}^{4}{P\left({{z}_{i}}\right)}=\sum\limits_{i=1}^{4}{{{z}_{i}}^{2}}-\sum\limits_{i=1}^{4}{{{z}_{i}}}+4={{\left(\sum\limits_{i=1}^{4}{{{z}_{i}}} \right)}^{2}}-2\sum\limits_{1\leqslant i\leqslant j\le4}{{{z}_{i}}{{z}_{j}}}-\sum\limits_{i=1}^{4}{{{z}_{i}}}+4$.
由韦达定理得 $\displaystyle \sum\limits_{i=1}^{4}{P\left({{z}_{i}} \right)}=1+2-1+4=6$.
因此 $\displaystyle \sum\limits_{i=1}^{4}{P\left({{z}_{i}}\right)}=\sum\limits_{i=1}^{4}{{{z}_{i}}^{2}}-\sum\limits_{i=1}^{4}{{{z}_{i}}}+4={{\left(\sum\limits_{i=1}^{4}{{{z}_{i}}} \right)}^{2}}-2\sum\limits_{1\leqslant i\leqslant j\le4}{{{z}_{i}}{{z}_{j}}}-\sum\limits_{i=1}^{4}{{{z}_{i}}}+4$.
由韦达定理得 $\displaystyle \sum\limits_{i=1}^{4}{P\left({{z}_{i}} \right)}=1+2-1+4=6$.
答案
解析
备注