设实数 $x\text{,}y\text{,}z$ 大于或等于 $1$ 。求证:$\left( {{x}^{2}}-2x+2 \right)\left( {{y}^{2}}-2y+2 \right)\left( {{z}^{2}}-2z+2 \right)\leqslant {{\left( xyz \right)}^{2}}-2xyz+2$
【难度】
【出处】
2009第8届CGMO试题
【标注】
【答案】
略
【解析】
注意到 $x\geqslant 1\text{,}y\geqslant 1$ 。则 $\begin{align}
& \left({{x}^{2}}-2x+2 \right)\left( {{y}^{2}}-2y+2 \right)-\left[ {{\left( xy\right)}^{2}}-2xy+2 \right] \\
&\text{=}\left( -2y+2 \right){{x}^{2}}+\left( 6y-2{{y}^{2}}-4 \right)x+\left(2{{y}^{2}}-4y+2 \right) \\
&\text{=}-2\left( y-1 \right)\left[ {{x}^{2}}+\left( y-2 \right)x+1-y \right] \\
&\text{=}-2\left( y-1 \right)\left( x-1 \right)\left( x+y-1 \right)\leqslant 0 \\
\end{align}$ 故 $\left( {{x}^{2}}-2x+2 \right)\left( {{y}^{2}}-2y+2\right)\leqslant {{\left( xy \right)}^{2}}-2xy+2$ 同理,因为 $xy\geqslant 1\text{,}z\geqslant 1$,所以 $\left[ {{\left( xy \right)}^{2}}-2xy+2 \right]\left({{z}^{2}}-2z+2 \right)\leqslant {{\left( xyz \right)}^{2}}-2xyz+2$ 从而命题得证。
& \left({{x}^{2}}-2x+2 \right)\left( {{y}^{2}}-2y+2 \right)-\left[ {{\left( xy\right)}^{2}}-2xy+2 \right] \\
&\text{=}\left( -2y+2 \right){{x}^{2}}+\left( 6y-2{{y}^{2}}-4 \right)x+\left(2{{y}^{2}}-4y+2 \right) \\
&\text{=}-2\left( y-1 \right)\left[ {{x}^{2}}+\left( y-2 \right)x+1-y \right] \\
&\text{=}-2\left( y-1 \right)\left( x-1 \right)\left( x+y-1 \right)\leqslant 0 \\
\end{align}$ 故 $\left( {{x}^{2}}-2x+2 \right)\left( {{y}^{2}}-2y+2\right)\leqslant {{\left( xy \right)}^{2}}-2xy+2$ 同理,因为 $xy\geqslant 1\text{,}z\geqslant 1$,所以 $\left[ {{\left( xy \right)}^{2}}-2xy+2 \right]\left({{z}^{2}}-2z+2 \right)\leqslant {{\left( xyz \right)}^{2}}-2xyz+2$ 从而命题得证。
答案
解析
备注