设 $x,y,z\geqslant 0$.且至多有一个为 $0$,求的 $f(x,y,z)=\sqrt{\dfrac{x^2+256yz}{y^2+z^2}}+\sqrt{\dfrac{y^2+256xz}{z^2+x^2}}+\sqrt{\dfrac{z^2+256xy}{x^2+y^2}}$ 最小值.
【难度】
【出处】
2018年全国高中数学联赛吉林省预赛
【标注】
【答案】
$12$
【解析】
不妨设 $x\geqslant y\geqslant z$.情形1:当 $256y^3\geqslant x^2z$ 时,因为 $\dfrac{{{x}^{2}}+256yz}{{{y}^{2}}+{{z}^{2}}}-\dfrac{{{x}^{2}}}{{{y}^{2}}}=\dfrac{z\left(256{{y}^{3}}-{{x}^{2}}z \right)}{\left( {{y}^{2}}+{{z}^{2}} \right){{y}^{2}}}\ge0$;$\dfrac{{{y}^{2}}+256zx}{{{z}^{2}}+{{x}^{2}}}-\dfrac{{{y}^{2}}}{{{x}^{2}}}=\dfrac{z\left(256{{x}^{3}}-{{y}^{2}}z \right)}{\left( {{z}^{2}}+{{x}^{2}}\right){{x}^{2}}}\geqslant 0$;$\dfrac{{{z}^{2}}+256xy}{{{x}^{2}}+{{y}^{2}}}-\dfrac{256xy}{{{x}^{2}}+{{y}^{2}}}=\dfrac{{{z}^{2}}}{{{x}^{2}}+{{y}^{2}}}\ge0$.所以 $f\left(x,y,z \right)\geqslant \sqrt{\dfrac{{{x}^{2}}}{{{y}^{2}}}}+\sqrt{\dfrac{{{y}^{2}}}{{{x}^{2}}}}+\sqrt{\dfrac{256xy}{{{x}^{2}}+{{y}^{2}}}}=\dfrac{x}{y}+\dfrac{y}{x}+16\sqrt{\dfrac{xy}{{{x}^{2}}+{{y}^{2}}}}=\dfrac{{{x}^{2}}+{{y}^{2}}}{xy}+8\sqrt{\dfrac{xy}{{{x}^{2}}+{{y}^{2}}}}+8\sqrt{\dfrac{xy}{{{x}^{2}}+{{y}^{2}}}}\ge3\sqrt[3]{64}=12$.当且仅当 $x:y=(2+\sqrt{3}):1$,且 $z=0$ 时.$f(x,y,z)$ 取到 $12$.
情形2:当 $256y^2<x^2z$ 时,又 $x^2z\geqslant x^2y$,故 $256y^3<x^2y$,从而 $256y^2<x^2$.故 $f\left( x,y,z \right)=\sqrt{\dfrac{{{x}^{2}}+256yz}{{{y}^{2}}+{{z}^{2}}}}+\sqrt{\dfrac{{{y}^{2}}+256zx}{{{z}^{2}}+{{x}^{2}}}}+\sqrt{\dfrac{{{z}^{2}}+256xy}{{{x}^{2}}+{{y}^{2}}}}>\sqrt{\dfrac{{{x}^{2}}+256yz}{{{y}^{2}}+{{z}^{2}}}}+0+0>\sqrt{\dfrac{256{{y}^{2}}+256yz}{{{y}^{2}}+{{z}^{2}}}}=16\sqrt{\dfrac{{{y}^{2}}+yz}{{{y}^{2}}+{{z}^{2}}}}\ge16>12$
.综上,$f(x,y,z)_\min=12$.
情形2:当 $256y^2<x^2z$ 时,又 $x^2z\geqslant x^2y$,故 $256y^3<x^2y$,从而 $256y^2<x^2$.故 $f\left( x,y,z \right)=\sqrt{\dfrac{{{x}^{2}}+256yz}{{{y}^{2}}+{{z}^{2}}}}+\sqrt{\dfrac{{{y}^{2}}+256zx}{{{z}^{2}}+{{x}^{2}}}}+\sqrt{\dfrac{{{z}^{2}}+256xy}{{{x}^{2}}+{{y}^{2}}}}>\sqrt{\dfrac{{{x}^{2}}+256yz}{{{y}^{2}}+{{z}^{2}}}}+0+0>\sqrt{\dfrac{256{{y}^{2}}+256yz}{{{y}^{2}}+{{z}^{2}}}}=16\sqrt{\dfrac{{{y}^{2}}+yz}{{{y}^{2}}+{{z}^{2}}}}\ge16>12$
.综上,$f(x,y,z)_\min=12$.
答案
解析
备注