已知 $\{a_n\}$ 是公差 $d(d\ne 0)$ 的等差数列,且 $a_1+t^2=a_2+t^3=a_3+t$.
【难度】
【出处】
2018年全国高中数学联赛江苏省预赛(初赛试题)
【标注】
-
求实数 $t,d$ 的值;标注答案$t=-\dfrac{1}{2},d=\dfrac{3}{8}$解析由题设知,$\begin{cases}
a_1+t^2=a_1+d+t^3\\
a_1+d+t^3=a_1+2d+t\\
\end{cases}$ 即 $\begin{cases}d=t^2-t^3\\
d=t^3-t\\
\end{cases}$
因为 $d\ne 0$,所以 $t\ne 0,t\ne 1$,所以由 $2t^2-t-1=0$ 得 $t=-\dfrac{1}{2},d=\dfrac{3}{8}$. -
若正整数满足 $m<p<r,a_m-2t^m=a_p-2t^p=a_r-2t^r=0$,求数组 $(m,p,r)$ 和相应的通项公式 $a_n$.标注答案$(m,p,r)=(1,3,4),a_n=-1+\dfrac{3}{8}(n-1)=\dfrac{3}{8}n-\dfrac{11}{8}$解析由 $a_m-2t^m=a_p-2t^p=a_r-2t^r=0,t=-\dfrac{1}{2},t=\dfrac{3}{8}$ 得 $(p-m)d=2[(-\dfrac{1}{2})^p-(-\dfrac{1}{2})^m]$,及 $(r-p)d=2[(-\dfrac{1}{2})^r-(-\dfrac{1}{2})^p]$,即 $\dfrac{3}{8}(p-m)=2[(-\dfrac{1}{2})^p-(-\dfrac{1}{2})^m]$,及 $\dfrac{3}{8}(r-p)=2[(-\dfrac{1}{2})^r-(-\dfrac{1}{2})^p]$,也即 $3(p-m)=2^4[(-\dfrac{1}{2})^p-(-\dfrac{1}{2})^m]$,及 $3(r-p)=2^4[(-\dfrac{1}{2})^r-(-\dfrac{1}{2})^p]$,两式左边都是正整数,故 $m<p<r\leqslant 4$,且 $m,p$ 都是奇数,所以 $m=1,p=3,r=4,a_1=-1$.验证如下:
$a_1-2(-\dfrac{1}{2})=-1-2(-\dfrac{1}{2})=0;a_3-2(-\dfrac{1}{2})^3=\dfrac{9}{8}-\dfrac{11}{8}-2(-\dfrac{1}{2})^3=0;a_4-2(-\dfrac{1}{2})^4=\dfrac{12}{8}-\dfrac{11}{8}-2(-\dfrac{1}{2})^4=0$.所以 $(m,p,r)=(1,3,4),a_n=-1+\dfrac{3}{8}(n-1)=\dfrac{3}{8}n-\dfrac{11}{8}$.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2