求最大的实数 $C$.使得对任意正整数 $n$ 和满足 $0=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=1$ 的数列 $\{x_k\}$,均有 $\displaystyle \sum\limits_{k=1}^{n} x_{k}^{2}\left(x_{k}-x_{k-1}\right)>C$.
【难度】
【出处】
2017第16届CGMO试题
【标注】
  • 数学竞赛
    >
    数列
    >
    数列不等式
  • 知识点
    >
    二试代数部分
【答案】
【解析】
首先证明 $C\geqslant\dfrac{1}{3}$.由 $x_{k} \geqslant x_{k-1} \geqslant 0$,得
$\displaystyle \begin{aligned} 3 \sum\limits_{k=1}^{n} x_{k}^{2}\left(x_{k}-x_{k-1}\right) &=\sum_{k=1}^{n}\left(x_{k}^{2}+x_{k}^{2}+x_{k}^{2}\right)\left(x_{k}-x_{k-1}\right) >\sum_{k=1}^{n}\left(x_{k}^{2}+x_{k} x_{k-1}+x_{k-1}^{2}\right)\left(x_{k}-x_{k-1}\right) =\sum_{k=1}^{n}\left(x_{k}^{3}-x_{k-1}^{3}\right)=x_{n}^{3}-x_{0}^{3}=1-0=1 \end{aligned}$
下面证明若 $C>\frac{1}{3}$,则存在 $0=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=1$ 使得 $\displaystyle \sum\limits_{k=1}^{n} x_{k}^{2}\left(x_{k}-x_{k-1}\right)<C$.
设 $x_{k}=\frac{k}{n}, k=0,1, \cdots, n$.当 $n>3$ 并且 $\frac{1}{n}<C-\frac{1}{3}$ 时,$\begin{aligned} \sum_{k=1}^{n} x_{k}^{2}\left(x_{k}-x_{k-1}\right) &=\dfrac{1}{n^{3}} \sum_{k=1}^{n} k^{2}=\dfrac{n(n+1)(2 n+1)}{6 n^{3}} =\dfrac{1}{3}+\frac{1}{2 n}\left(1+\dfrac{3}{n}\right) <\frac{1}{3}+\dfrac{1}{n}<C \end{aligned}$
因此,$C=\dfrac{1}{3}$.
答案 解析 备注
0.201523s