设 $\displaystyle a_1=1, a_n=n^2\sum^{n-1}_{k=1}\frac{1}{k^2}$($n\geqslant 2$),求证:
【难度】
【出处】
无
【标注】
-
$\frac{a_n+1}{a_{n+1}}=\frac{n^2}{(n+1)^2}$($n\geqslant 2$);标注答案略解析由已知可得 $\displaystyle \frac{a_n+1}{a_{n+1}}=\frac{n^2\sum^{n-1}_{k=1}\frac{1}{k^2}+\frac{n^2}{n^2}}{(n+1)^2\sum^n_{k=1}\frac{1}{k^2}}=\frac{n^2}{(n+1)^2}$.
-
$(1+\frac{1}{a_1})(1+\frac{1}{a_2})\ldots (1+\frac{1}{a_n})<4$($n\geqslant 1$).标注答案略解析由已知条件有 $a=1, a_2=4$.
当 $n=1$ 时,$1+\frac{1}{a_1}=2<4$,不等式成立.
当 $n\geqslant 2$ 时,由(1)的结论可得$$\begin{aligned}
&=(1+\frac{1}{a_1})(1+\frac{1}{a_2})(1+\frac{1}{a_3})\ldots (1+\frac{1}{a_n})\\
&=\frac{1+a_1}{a_1}\cdot \frac{1+a_2}{a_2}\cdot \frac{1+a_3}{a_3}\cdot \ldots \cdot \frac{1+a_n}{a_n}\\
&=\frac{1+a_2}{a_1a_2}\cdot (\frac{1+a_2}{a_2}\cdot \frac{1+a_3}{a_3}\cdot \ldots \cdot \frac{1+a_n}{a_{n+1})}\cdot a_{n+1}\\
&=\frac{1}{2}\cdot [\frac{2^2}{3^2}\cdot \frac{3^2}{4^2}\cdot \ldots \cdot \frac{n^2}{(n+1)^2}]\cdot a_{n+1}=\frac{2a_{n+1}}{(n+1)^2}\\
&=2(1+\frac{1}{2^2}+\frac{1}{3^2}+\ldots +\frac{1}{n^2})\\
&<2[1+\frac{1}{1\times 2}+\frac{1}{2\times 3}+\ldots +\frac{1}{(n-1)\times n}]\\
&=2[1+(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+\ldots +(\frac{1}{n-1}-\frac{1}{n})]\\
&=2(2-\frac{1}{n})<4.\\
\end{aligned}$$综上所述,不等式成立.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2