设 $a\in\mathbb{R}, \theta\in[0,2\pi)$,复数 $z_1=\cos\theta+i\sin\theta, z_2=\sin\theta+i\cos\theta, z_3=a(1-i)$,试求所有的数对 $(a,\theta)$,使得 $z_1,z_2,z_3$ 依次成等比数列.
【难度】
【出处】
全国高中数学联赛模拟试题(13)
【标注】
【答案】
略
【解析】
(法一)由已知可得$$(\cos\theta+i\sin\theta)(a-ai)=z_1z_3=z_2^2=(\sin\theta+i\cos\theta)^2,$$故$$a(\cos\theta+\sin\theta)+a(\sin\theta-\cos\theta)i=(\sin^2\theta-\cos^2\theta)+2\sin\theta\cos\theta i.$$由复数相等的条件,知$$a(\cos\theta+\sin\theta)=\sin^2\theta-\cos^2\theta=(\sin\theta+\cos\theta)(\sin\theta-\cos\theta),~~~ ① $$$$a(\sin\theta-\cos\theta)=2\sin\theta\cos\theta.~~~ ② $$若 $\cos\theta+\sin\theta=0$,则$$\sin 2\theta=2\sin\theta\cos\theta=-1+\cos^2\theta+\sin^2\theta+2\sin\theta\cos\theta=-1+(\sin\theta+\cos\theta)^2=-1.$$故 $2\theta=\frac{3}{2}\pi+2k\pi$($k\in\mathbb{Z}$),为使 $\theta\in [0,2\pi)$,取 $k=0,1$,则对应的 $\theta$ 分别为 $\frac{3}{4}\pi, \frac{7}{4}\pi$.当 $\theta=\frac{3}{4}\pi$ 时,有$$\alpha=\frac{2\sin\frac{3}{4}\pi\cos\frac{3}{4}\pi}{\sin\frac{3}{4}\pi-\cos\frac{3}{4}\pi}=-\frac{\sqrt{2}}{2}.$$当 $\theta=\frac{7}{4}\pi$ 时,有$$a=\frac{2\sin\frac{7}{4}\pi\cos\frac{7}{4}\pi}{\sin\frac{7}{4}\pi-\cos\frac{7}{4}\pi}=\frac{\sqrt{2}}{2}.$$若 $\cos\theta+\sin\theta\neq 0$,则式 ① 即 $a=\sin\theta-\cos\theta$.代入式 ②,得$$(\sin\theta-\cos\theta)^2=2\sin\theta\cos\theta.~~~~ ③ $$假设 $\cos\theta=0$,则上式左边为 $\sin^2\theta=1$,而右边等于 $0$,矛盾.故 $\cos\theta\neq 0$.式 ③ 两边同时除以 $\cos^2\alpha$,整理得$$\tan^2\theta-4\tan\theta+1=0\Rightarrow \tan\theta=2\pm \sqrt{3},$$由此可得 $\theta=\frac{\pi}{12}, \frac{5\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{2}$,分别代入 $a=\sin\theta-\cos\theta$,得到对应的 $a=-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}$.
综上所述,满足条件的所有数对 $(a,\theta)$ 为$$\left(-\frac{\sqrt{2}}{2},-\frac{\pi}{12}\right),\left(\frac{\sqrt{2}}{2}, \frac{5\pi}{12}\right),\left(-\frac{\sqrt{2}}{2}, \frac{3\pi}{4}\right),\left(\frac{\sqrt{2}}{2},\frac{13\pi}{12}\right),\left(-\frac{\sqrt{2}}{2},\frac{17}{12}\pi\right),\left(\frac{\sqrt{2}}{4}, \frac{7\pi}{4}\right),$$(法二)由 $|z_1|=|z_2|=1, \frac{z_3}{z_2}=\frac{z_2}{z_1}$,得$$|z_3|=\left|\frac{z_2^2}{z_1}\right|=1\Rightarrow \sqrt{2a^2}=|z_3|=1\Rightarrow a=\pm \frac{\sqrt{2}}{2}.$$当 $a=\frac{\sqrt{2}}{2}, \arg z_3=\frac{7\pi}{4}$;当 $a=-\frac{\sqrt{2}}{2}$ 时,$\arg z_3=\frac{3\pi}{4}$.
显然,$\arg z_1=\theta$,而$$z_2=\sin\theta+i\cos\theta=\cos\left(\frac{\pi}{2}-\theta\right)+i\sin\left(\frac{\pi}{2}-\theta\right).$$(i)当 $0\leqslant \theta \leqslant \frac{\pi}{2}, \arg z_2=\frac{\pi}{2}-\theta$.由 $\frac{z_3}{z_2}=\frac{z_2}{z_1}$,得$$\arg z_3-\arg z_2=\arg z_2-arg z_1+2k\pi (k\in\mathbb{Z}),$$即$$\arg z_3=2\arg z_2-arg z_1+2k\pi=\pi-3\theta+2k\pi.$$若 $k\leqslant -1$,则 $\pi-3\theta+2k\pi<0$,矛盾.
若 $k=0$,则 $\arg z_3=\pi-3\theta=\frac{3\pi}{4}或\frac{7\pi}{4}$.又 $-\frac{\pi}{2}\leqslant \pi -3\theta\leqslant \pi$,故 $\arg z_3=\frac{3\pi}{4},\theta=\frac{\pi}{12}$,此时 $a=-\frac{\sqrt{2}}{2}$.
若 $k=1$,则 $\arg z_3=3\pi-3\theta=\frac{3\pi}{4}或\frac{7\pi}{4}$.又 $\frac{3\pi}{2}\leqslant 3\pi-3\theta\leqslant 3\pi$,故 $\arg z_3=\frac{7\pi}{4}, \theta=\frac{5\pi}{12}$,此时 $a=\frac{\sqrt{2}}{2}$.
若 $k\geqslant 2$,则 $\pi-3\theta+2k\pi>2\pi$,矛盾.
(ii)当 $\frac{\pi}{2}<\theta<2\pi$ 时,$\arg z_2=\frac{5\pi}{2}-\theta$.类似(i),我们有$$\arg z_3=2\arg z_2-\arg z_1+2k\pi=5\pi-3\theta+2k\pi (k\in\mathbb{Z}).$$若 $\arg z_3=\frac{3\pi}{4}$(此时 $a=-\frac{\sqrt{2}}{2}$),则 $\theta =\frac{(17+8k)\pi}{12}$.
此时,若 $k\leqslant -2$,则 $\theta <\frac{\pi}{2}$,矛盾.若 $k=1$,则 $\theta=\frac{3\pi}{4}$.若 $k=0$,则 $\theta =\frac{17\pi}{12}$.若 $k\geqslant 1$,则 $\theta>2\pi$,矛盾.
若 $\arg z_3=\frac{7\pi}{4}$(此时 $ a=\frac{\sqrt{2}}{2} $),则 $ \theta=\frac{(13+8k)\pi}{12} $.
此时,若 $ k\leqslant -1 $,则 $ \theta <\frac{\pi}{2} $,矛盾.若 $ k=0 $,则 $ \theta=\frac{13\pi}{12} $.若 $ k=1 $,则 $ \theta=\frac{7\pi}{4} $.若 $ k\geqslant 2 $,则 $ \theta>2\pi $,矛盾.
综上所述,满足条件的所有数对 $(a,\theta)$ 为$$ \left(-\frac{\sqrt{2}}{2},-\frac{\pi}{12}\right),\left(\frac{\sqrt{2}}{2},\frac{5\pi}{12}\right),\left(-\frac{\sqrt{2}}{2},\frac{3\pi}{4}\right),\left(\frac{\sqrt{2}}{2},\frac{13\pi}{12}\right),\left(-\frac{\sqrt{2}}{2},\frac{17}{12}\pi\right),\left(\frac{\sqrt{2}}{4},\frac{7\pi}{4}\right),$$
综上所述,满足条件的所有数对 $(a,\theta)$ 为$$\left(-\frac{\sqrt{2}}{2},-\frac{\pi}{12}\right),\left(\frac{\sqrt{2}}{2}, \frac{5\pi}{12}\right),\left(-\frac{\sqrt{2}}{2}, \frac{3\pi}{4}\right),\left(\frac{\sqrt{2}}{2},\frac{13\pi}{12}\right),\left(-\frac{\sqrt{2}}{2},\frac{17}{12}\pi\right),\left(\frac{\sqrt{2}}{4}, \frac{7\pi}{4}\right),$$(法二)由 $|z_1|=|z_2|=1, \frac{z_3}{z_2}=\frac{z_2}{z_1}$,得$$|z_3|=\left|\frac{z_2^2}{z_1}\right|=1\Rightarrow \sqrt{2a^2}=|z_3|=1\Rightarrow a=\pm \frac{\sqrt{2}}{2}.$$当 $a=\frac{\sqrt{2}}{2}, \arg z_3=\frac{7\pi}{4}$;当 $a=-\frac{\sqrt{2}}{2}$ 时,$\arg z_3=\frac{3\pi}{4}$.
显然,$\arg z_1=\theta$,而$$z_2=\sin\theta+i\cos\theta=\cos\left(\frac{\pi}{2}-\theta\right)+i\sin\left(\frac{\pi}{2}-\theta\right).$$(i)当 $0\leqslant \theta \leqslant \frac{\pi}{2}, \arg z_2=\frac{\pi}{2}-\theta$.由 $\frac{z_3}{z_2}=\frac{z_2}{z_1}$,得$$\arg z_3-\arg z_2=\arg z_2-arg z_1+2k\pi (k\in\mathbb{Z}),$$即$$\arg z_3=2\arg z_2-arg z_1+2k\pi=\pi-3\theta+2k\pi.$$若 $k\leqslant -1$,则 $\pi-3\theta+2k\pi<0$,矛盾.
若 $k=0$,则 $\arg z_3=\pi-3\theta=\frac{3\pi}{4}或\frac{7\pi}{4}$.又 $-\frac{\pi}{2}\leqslant \pi -3\theta\leqslant \pi$,故 $\arg z_3=\frac{3\pi}{4},\theta=\frac{\pi}{12}$,此时 $a=-\frac{\sqrt{2}}{2}$.
若 $k=1$,则 $\arg z_3=3\pi-3\theta=\frac{3\pi}{4}或\frac{7\pi}{4}$.又 $\frac{3\pi}{2}\leqslant 3\pi-3\theta\leqslant 3\pi$,故 $\arg z_3=\frac{7\pi}{4}, \theta=\frac{5\pi}{12}$,此时 $a=\frac{\sqrt{2}}{2}$.
若 $k\geqslant 2$,则 $\pi-3\theta+2k\pi>2\pi$,矛盾.
(ii)当 $\frac{\pi}{2}<\theta<2\pi$ 时,$\arg z_2=\frac{5\pi}{2}-\theta$.类似(i),我们有$$\arg z_3=2\arg z_2-\arg z_1+2k\pi=5\pi-3\theta+2k\pi (k\in\mathbb{Z}).$$若 $\arg z_3=\frac{3\pi}{4}$(此时 $a=-\frac{\sqrt{2}}{2}$),则 $\theta =\frac{(17+8k)\pi}{12}$.
此时,若 $k\leqslant -2$,则 $\theta <\frac{\pi}{2}$,矛盾.若 $k=1$,则 $\theta=\frac{3\pi}{4}$.若 $k=0$,则 $\theta =\frac{17\pi}{12}$.若 $k\geqslant 1$,则 $\theta>2\pi$,矛盾.
若 $\arg z_3=\frac{7\pi}{4}$(此时 $ a=\frac{\sqrt{2}}{2} $),则 $ \theta=\frac{(13+8k)\pi}{12} $.
此时,若 $ k\leqslant -1 $,则 $ \theta <\frac{\pi}{2} $,矛盾.若 $ k=0 $,则 $ \theta=\frac{13\pi}{12} $.若 $ k=1 $,则 $ \theta=\frac{7\pi}{4} $.若 $ k\geqslant 2 $,则 $ \theta>2\pi $,矛盾.
综上所述,满足条件的所有数对 $(a,\theta)$ 为$$ \left(-\frac{\sqrt{2}}{2},-\frac{\pi}{12}\right),\left(\frac{\sqrt{2}}{2},\frac{5\pi}{12}\right),\left(-\frac{\sqrt{2}}{2},\frac{3\pi}{4}\right),\left(\frac{\sqrt{2}}{2},\frac{13\pi}{12}\right),\left(-\frac{\sqrt{2}}{2},\frac{17}{12}\pi\right),\left(\frac{\sqrt{2}}{4},\frac{7\pi}{4}\right),$$
答案
解析
备注