已知 $\tan\alpha =-2$,$\tan\left(\alpha+\beta\right)=\dfrac 17$,则 $\tan \beta$ 的值为
【难度】
【出处】
2015年高考江苏卷
【标注】
  • 知识点
    >
    三角
    >
    三角恒等变换
    >
    和差角公式
  • 题型
    >
    三角
【答案】
$3$
【解析】
可将 $\beta$ 写成 $\beta=(\alpha+\beta)-\alpha$,然后利用两角差正切公式求解.$\tan \beta=\tan \left[\left(\alpha+\beta\right)-\alpha\right]=\dfrac {\tan \left(\alpha+\beta\right)-\tan \alpha}{1+\tan \left(\alpha+\beta\right)\tan \alpha}=3$.
题目 答案 解析 备注
0.132496s