观察下列各式:
${\mathrm C}_1^0 =4^0$;
${\mathrm C}_3^0+{\mathrm C}_3^1=4^1$;
${\mathrm C}_5^0+{\mathrm C}_5^1+{\mathrm C}_5^2=4^2$;
${\mathrm C}_7^0+{\mathrm C}_7^1+{\mathrm C}_7^2+{\mathrm C}_7^3=4^3$;
$\cdots$
照此规律,当 $n\in \mathbb N^*$ 时,${\mathrm C}_{2n-1}^0+{\mathrm C}_{2n-1}^1+{\mathrm C}_{2n-1}^2+\cdots+{\mathrm C}_{2n-1}^{n-1}=$ .
${\mathrm C}_1^0 =4^0$;
${\mathrm C}_3^0+{\mathrm C}_3^1=4^1$;
${\mathrm C}_5^0+{\mathrm C}_5^1+{\mathrm C}_5^2=4^2$;
${\mathrm C}_7^0+{\mathrm C}_7^1+{\mathrm C}_7^2+{\mathrm C}_7^3=4^3$;
$\cdots$
照此规律,当 $n\in \mathbb N^*$ 时,${\mathrm C}_{2n-1}^0+{\mathrm C}_{2n-1}^1+{\mathrm C}_{2n-1}^2+\cdots+{\mathrm C}_{2n-1}^{n-1}=$
【难度】
【出处】
2015年高考山东卷(理)
【标注】
【答案】
$4^{n-1}$
【解析】
观察法归纳出规律,主要考查归纳推理.由归纳推理可得当 $n\in \mathbb N^*$ 时,${\mathrm C}_{2n-1}^0+{\mathrm C}_{2n-1}^1+{\mathrm C}_{2n-1}^2+\cdots+{\mathrm C}_{2n-1}^{n-1}=4^{n-1}$.
题目
答案
解析
备注