当 $x \in {\mathbb{R}},\left| x \right| < 1$ 时,有如下表达式:$1 + x + {x^2} + \cdots + {x^n} + \cdots = \dfrac{1}{1 - x}$.两边同时积分得:${\int_0^{\frac{1}{2}}} {1{\mathrm{d}}x + } \int_0^{\frac{1}{2}} {x{\mathrm{d}}x + } \int_0^{\frac{1}{2}} {{x^2}{\mathrm{d}}x + } \cdots+ \int_0^{\frac{1}{2}} {{x^n}{\mathrm{d}}x + } \cdots =\int_0^{\frac{1}{2}} {\dfrac{1}{1 - x}{\mathrm{d}}x} $,从而得到如下等式:$1 \times \dfrac{1}{2} + \dfrac{1}{2} \times {\left( {\dfrac{1}{2}} \right)^2} + \dfrac{1}{3} \times {\left( {\dfrac{1}{2}} \right)^3} + \cdots + \dfrac{1}{n + 1} \times {\left( {\dfrac{1}{2}} \right)^{n + 1}} + \cdots = \ln 2.$
请根据以上材料所蕴含的数学思想方法,计算:
${\mathrm{C}}_n^0 \times \dfrac{1}{2} + \dfrac{1}{2}{\mathrm{C}}_n^1 \times {\left( {\dfrac{1}{2}} \right)^2} + \dfrac{1}{3}{\mathrm{C}}_n^2 \times {\left( {\dfrac{1}{2}} \right)^3} + \cdots + \dfrac{1}{n + 1}{\mathrm{C}}_n^n \times {\left( {\dfrac{1}{2}} \right)^{n + 1}} =$ .
请根据以上材料所蕴含的数学思想方法,计算:
${\mathrm{C}}_n^0 \times \dfrac{1}{2} + \dfrac{1}{2}{\mathrm{C}}_n^1 \times {\left( {\dfrac{1}{2}} \right)^2} + \dfrac{1}{3}{\mathrm{C}}_n^2 \times {\left( {\dfrac{1}{2}} \right)^3} + \cdots + \dfrac{1}{n + 1}{\mathrm{C}}_n^n \times {\left( {\dfrac{1}{2}} \right)^{n + 1}} =$
【难度】
【出处】
2013年高考福建卷(理)
【标注】
【答案】
$\dfrac{1}{n + 1}\left[ {{{\left( {\dfrac{3}{2}} \right)}^{n + 1}} - 1} \right]$
【解析】
本题主要考查对新知识的理解能力,本题蕴含的数学思想为相等的两式子的积分也相等.设 $f\left( x \right) = {\mathrm{C}}_n^0x + \dfrac{1}{2}{\mathrm{C}}_n^1{x^2} + \dfrac{1}{3}{\mathrm{C}}_n^2{x^3} + \cdots + \dfrac{1}{n + 1}{\mathrm{C}}_n^n{x^{n + 1}}$,所以\[\begin{split} f'\left( x \right) & \overset{\left[a\right]}= {\mathrm{C}}_n^0 + {\mathrm{C}}_n^1x + {\mathrm{C}}_n^2{x^2} + \cdots + {\mathrm{C}}_n^n{x^n} \\& \overset{\left[b\right]}= {\left( {1 + x} \right)^n}.\end{split}\](推导中用到:[a],[b])所以依微积分基本定理得\[\begin{split}f\left( {\dfrac{1}{2}} \right) & = \int_0^{\frac{1}{2}} {{\left( {1 + x} \right)}^n}{\mathrm{d}}x \\& = \dfrac{1}{n + 1}{{\left( {1 + x} \right)}^{n + 1}}\left|\right._0^{\frac{1}{2}}\\& = \dfrac{1}{n + 1}{\left( {1 + \dfrac{1}{2}} \right)^{n + 1}} - \dfrac{1}{n + 1}{\left( {1 + 0} \right)^{n + 1}} \\& = \dfrac{1}{n + 1}\left[ {{{\left( {\dfrac{3}{2}} \right)}^{n + 1}} - 1} \right],\end{split}\]即\[{\mathrm{C}}_n^0 \times \dfrac{1}{2} + \dfrac{1}{2}{\mathrm{C}}_n^1 \times {\left( {\dfrac{1}{2}} \right)^2} + \dfrac{1}{3}{\mathrm{C}}_n^2 \times {\left( {\dfrac{1}{2}} \right)^3} + \cdots + \dfrac{1}{n + 1}{\mathrm{C}}_n^n \times {\left( {\dfrac{1}{2}} \right)^{n + 1}} = \dfrac{1}{n + 1}\left[ {{{\left( {\dfrac{3}{2}} \right)}^{n + 1}} - 1} \right].\]
题目
答案
解析
备注