记 $\max \left\{ {x,y} \right\} = {\begin{cases}
x,x \geqslant y, \\
y,x < y, \\
\end{cases}}$ $ \min \left\{ {x,y} \right\} = {\begin{cases}y,x \geqslant y, \\
x,x < y ,\\
\end{cases}}$ 设 ${\overrightarrow{a}}, \overrightarrow b $ 为平面向量,则 \((\qquad)\)
x,x \geqslant y, \\
y,x < y, \\
\end{cases}}$ $ \min \left\{ {x,y} \right\} = {\begin{cases}y,x \geqslant y, \\
x,x < y ,\\
\end{cases}}$ 设 ${\overrightarrow{a}}, \overrightarrow b $ 为平面向量,则 \((\qquad)\)
【难度】
【出处】
2014年高考浙江卷(理)
【标注】
【答案】
D
【解析】
本题可以利用向量的坐标运算或数量积的定义来求解.若 $\overrightarrow a=\left(1,0\right)$,$\overrightarrow b=\left(0,1\right)$,则\[\min \left\{ \left| \overrightarrow a + \overrightarrow b \right| , \left| \overrightarrow a - \overrightarrow b \right| \right\}=\left| \overrightarrow a + \overrightarrow b \right| =\left| \overrightarrow a - \overrightarrow b \right|\overset{\left[a\right]}=\sqrt 2,\](推导中用到:[a])而\[\min \left\{ \left| \overrightarrow a \right| , \left| \overrightarrow b\right|\right\}= \left| \overrightarrow a \right| = \left| \overrightarrow b\right|\overset{\left[b\right]}=1,\](推导中用到:[b])所以A不正确;
若 $\overrightarrow a=\left(1,\dfrac 12\right)$,$\overrightarrow b=\left(\dfrac 12,1\right)$,则\[\min \left\{ \left| \overrightarrow a + \overrightarrow b \right| , \left| \overrightarrow a - \overrightarrow b \right| \right\}=\left| \overrightarrow a - \overrightarrow b \right|\overset{\left[c\right]}=\dfrac{\sqrt 2}2,\](推导中用到:[d])而\[ \min \left\{ \left| \overrightarrow a \right| , \left| \overrightarrow b\right|\right\}=\left| \overrightarrow a \right| = \left| \overrightarrow b\right|\overset{\left[d\right]}=\dfrac{\sqrt 5}2,\](推导中用到:[d])所以B不正确;
由平面向量的数量积可得\[\left| \overrightarrow a + \overrightarrow b \right|^2=\left|{\overrightarrow a}\right|^2+\left|\overrightarrow b\right|^2+2\overrightarrow a \cdot \overrightarrow b \]和\[\left| \overrightarrow a - \overrightarrow b \right|^2=\left|{\overrightarrow a}\right|^2+\left|\overrightarrow b\right|^2-2\overrightarrow a \cdot \overrightarrow b ,\]可知D正确,C不正确.
若 $\overrightarrow a=\left(1,\dfrac 12\right)$,$\overrightarrow b=\left(\dfrac 12,1\right)$,则\[\min \left\{ \left| \overrightarrow a + \overrightarrow b \right| , \left| \overrightarrow a - \overrightarrow b \right| \right\}=\left| \overrightarrow a - \overrightarrow b \right|\overset{\left[c\right]}=\dfrac{\sqrt 2}2,\](推导中用到:[d])而\[ \min \left\{ \left| \overrightarrow a \right| , \left| \overrightarrow b\right|\right\}=\left| \overrightarrow a \right| = \left| \overrightarrow b\right|\overset{\left[d\right]}=\dfrac{\sqrt 5}2,\](推导中用到:[d])所以B不正确;
由平面向量的数量积可得\[\left| \overrightarrow a + \overrightarrow b \right|^2=\left|{\overrightarrow a}\right|^2+\left|\overrightarrow b\right|^2+2\overrightarrow a \cdot \overrightarrow b \]和\[\left| \overrightarrow a - \overrightarrow b \right|^2=\left|{\overrightarrow a}\right|^2+\left|\overrightarrow b\right|^2-2\overrightarrow a \cdot \overrightarrow b ,\]可知D正确,C不正确.
题目
答案
解析
备注