0-1周期序列在通信技术中有着重要应用.若序列 $a_1a_2\cdots a_n\cdots$ 满足 $a_i\in(0,1)(i=1,2,\cdots)$,且存在正整数 $m$,使得 $a_{i+m}=a_i(i=1,2,\cdots)$ 成立,则称其为 0-1 周期序列,并称满足 $a_{i+m}=a_i(i=1,2,\cdots)$ 的最小正整数 $m$ 为这个序列的周期,对于周期为 $m$ 的 0-1 序列 $a_1a_2\cdots a_n\cdots$,$C(k)=\frac{1}{m}\sum_{i=1}^m a_ia_{i+k}(k=1,2,\cdots,m-1)$ 是描述其性质的重要指标.下列周期为 $5$ 的 0-1 序列中,满足 $C(k)\leqslant\frac{1}{5}(k=1,2,3,4)$ 的序列是 \((\qquad)\)
【难度】
【出处】
2020高考全国(Ⅱ)卷(理)
【标注】
【答案】
C
【解析】
略
题目
答案
解析
备注